One of the molecules responsible for triggering the inflammation that causes allergic respiratory diseases, such as asthma and allergic rhinitis, has just been discovered by scientists from the CNRS, Inserm and the Université Toulouse III — Paul Sabatier. This molecule, from the alarmin family, represents a therapeutic target of major interest for the treatment of allergic diseases. The study, co-directed by Corinne Cayrol and Jean-Philippe Girard, is published in the Journal of Experimental Medicine on 10 April.

The inflammation process plays a crucial role in allergic respiratory diseases, such as asthma and allergic rhinitis. Although the pulmonary epithelium, the carpet of cells that forms the inner surface of the lungs, is recognised as a major player in the respiratory inflammation that causes these diseases, the underlying mechanisms are still poorly understood.

A research team has identified one of the molecules responsible for triggering these allergic reactions, in a study co-led by two CNRS and Inserm scientists working at l’Institut de pharmacologie et de biologie structural (CNRS/Université Toulouse III — Paul Sabatier). This molecule from the alarmin family, named TL1A, is released by lung epithelium cells a few minutes after exposure to a mould-type allergen. It cooperates with another alarmin, interleukin-33, to alert the immune system. This double alarm signal stimulates the activity of immune cells, triggering a cascade of reactions responsible for allergic inflammation.

Alarmins, therefore, constitute major therapeutic targets for the treatment of respiratory allergic diseases. In a few years’ time, treatments based on antibodies blocking the TL1A alarmin could benefit patients suffering from severe asthma or other allergic diseases. In France, at least 17 million people are affected by allergic diseaseswith the most severe forms of asthma being responsible for several hundred deaths every year.



Source link

Leave a Reply

Your email address will not be published. Required fields are marked *

Before you post, please prove you are sentient.

What is 4 * 7?

Explore More

How a new gut microbe drives the gut-lung axis

A team has discovered a new communication pathway between the gut and lung. Their findings highlight how a little-known member of the gut microbiome reshapes the lung immune environment to

Lower airways are distinct in cystic fibrosis even at younger ages

In the largest study of its kind, researchers found that the lower airways in children with cystic fibrosis (CF) have a higher burden of infection, more inflammation and lower diversity

Dietary zinc protects against Streptococcus pneumoniae infection, study finds

Researchers have uncovered a crucial link between dietary zinc intake and protection against Streptococcus pneumoniae, the primary bacterial cause of pneumonia. Globally, it is estimated that nearly two billion people