Riluzole, a drug approved to treat amyotrophic lateral sclerosis (ALS), a disease affecting nerve cells controlling movement, could slow the gradual loss of a particular brain cell that occurs in Niemann-Pick disease type C1 (NPC1), a rare genetic disorder affecting children and adolescents, suggests a study in mice by scientists at the National Institutes of Health.

The study was conducted by Forbes D. Porter, M.D., Ph.D., of NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), and colleagues in the National Human Genome Research Institute and National Institute of Arthritis and Musculoskeletal and Skin Disease. It appears in Molecular Genetics and Metabolism. The study was supported in part by a grant from the Ara Parseghian Medical Research Foundation.

NPC1 results from an impaired ability to move cholesterol through cells, leading to difficulty controlling movements, liver and lung disease, impaired swallowing, intellectual decline and death. Much of the movement difficulties in NPC1 result from gradual loss of brain cells known as Purkinje neurons. The researchers found that mice with a form of NPC1 have a diminished ability to lower levels of glutamate — a brain chemical that stimulates neurons — after it has bound to a neuron’s surface. High levels of glutamate can be toxic to cells. The researchers believe the buildup of glutamate contributes to the brain cell loss seen in the disease. Riluzole blocks the release of glutamate and hence delays the progression of ALS in people.

In the current study, mice with NPC1 survived 12% longer when treated with riluzole, compared to untreated mice. The researchers believe that riluzole or similar drugs may provide a way to slow disease progression in patients with NPC1.



Source link

Leave a Reply

Your email address will not be published. Required fields are marked *

Before you post, please prove you are sentient.

What color is the sky on a sunny day?

Explore More

Just a moment…

Just a moment… Enable JavaScript and cookies to continue This request seems a bit unusual, so we need to confirm that you’re human. Please press and hold the button until

Brain tumor treatment by targeting TUG1, a gene that controls replication stress

A new study has unravelled a crucial link between how cancer cells cope with replication stress and the role of Taurine Upregulated Gene 1 (TUG1). By targeting TUG1 with a

Common headaches tied to neck inflammation

Researchers have identified objective evidence of how the neck muscles are involved in primary headaches, according to a study being presented today at the annual meeting of the Radiological Society