Riluzole, a drug approved to treat amyotrophic lateral sclerosis (ALS), a disease affecting nerve cells controlling movement, could slow the gradual loss of a particular brain cell that occurs in Niemann-Pick disease type C1 (NPC1), a rare genetic disorder affecting children and adolescents, suggests a study in mice by scientists at the National Institutes of Health.

The study was conducted by Forbes D. Porter, M.D., Ph.D., of NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), and colleagues in the National Human Genome Research Institute and National Institute of Arthritis and Musculoskeletal and Skin Disease. It appears in Molecular Genetics and Metabolism. The study was supported in part by a grant from the Ara Parseghian Medical Research Foundation.

NPC1 results from an impaired ability to move cholesterol through cells, leading to difficulty controlling movements, liver and lung disease, impaired swallowing, intellectual decline and death. Much of the movement difficulties in NPC1 result from gradual loss of brain cells known as Purkinje neurons. The researchers found that mice with a form of NPC1 have a diminished ability to lower levels of glutamate — a brain chemical that stimulates neurons — after it has bound to a neuron’s surface. High levels of glutamate can be toxic to cells. The researchers believe the buildup of glutamate contributes to the brain cell loss seen in the disease. Riluzole blocks the release of glutamate and hence delays the progression of ALS in people.

In the current study, mice with NPC1 survived 12% longer when treated with riluzole, compared to untreated mice. The researchers believe that riluzole or similar drugs may provide a way to slow disease progression in patients with NPC1.



Source link

Leave a Reply

Your email address will not be published. Required fields are marked *

Before you post, please prove you are sentient.

what is 7 in addition to 5?

Explore More

How optogenetics can put the brakes on epilepsy seizures

In what could one day become a new treatment for epilepsy, researchers at UC San Francisco, UC Santa Cruz and UC Berkeley have used pulses of light to prevent seizure-like

Investigational drug stops toxic proteins tied to neurodegenerative diseases

An investigational drug that targets an instigator of the TDP-43 protein, a well-known hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), may reduce the protein’s buildup and neurological

Astrocytes study identifies a new therapeutic target for Alzheimer’s disease

Astrocyte characterization. Credit: Molecular Psychiatry (2024). DOI: 10.1038/s41380-024-02746-8 Worldwide, at least 50 million people are believed to be living with a form of dementia. Alzheimer’s disease is the most common