It has been known for several years that the diagnosis “multiple sclerosis” conceals a whole range of different illnesses, each requiring customized treatment. Researchers at the University of Basel and the University Hospital of Basel have now described a possible new MS-like disease and explained how to diagnose it.

Multiple sclerosis (MS) is characterized by areas of inflammation in the central nervous system. The immune system attacks the body’s own structures and destroys the covering of nerve cells, known as the myelin sheath. The picture research has painted of the illness is somewhat more complicated, however. It can cause a variety of neurological symptoms, like paresthesia and paralysis of the limbs, which progressively or abruptly worsen. Which parts of the nervous system are affected varies substantially between individuals. A treatment may work for some patients — but make the condition worse in others.

“There’s a huge amount of diversity in how inflammatory autoimmune diseases of the central nervous system like multiple sclerosis present,” explains Professor Anne-Katrin Pröbstel of the University of Basel and University Hospital Basel. Researchers have been gradually discovering the key distinctive features of “atypical” cases of MS for the past ten years. A few of these autoimmune diseases have been given different names to better distinguish them from MS even though they also destroy the myelin sheath. Victims of these diseases often have inflammation in their spinal cords or optic nerves.

In a study of roughly 1,300 patients, Pröbstel’s team has now discovered a biomarker that may make it possible to differentiate another MS-like illness from the others. The researchers have reported their findings in the journal JAMA Neurology.

Antibodies as biomarkers

The team discovered a specific antibody, a type of immunoglobulin A (IgA), in one group of patients. The antibody attacks a component of the myelin sheath called “MOG” (which stands for “myelin oligodendrocyte glycoprotein”). IgA antibodies are typically responsible for protecting mucous membranes.

The precise role of MOG-IgA in this autoimmune disease remains unclear, however. “Victims experience inflammation particularly in their spinal cords and brain stems,” Pröbstel explains. This group of patients was missing other typical biomarkers related to MS or similar diseases.

Next, the researchers want to decipher the role of MOG-IgA and the clinical characteristics arising from it in more detail. “By distinguishing between myelin-destroying autoimmune diseases that were previously all called MS, we’re taking an important step towards a better understanding of the causes of these illnesses and towards individualized treatments,” says the neurologist. Ultimately, the researchers hope to discover what treatments are most effective under what conditions.

About the project

The study was conducted in collaboration with the Universidade de São Paulo in Brazil and several German universities (Charité Berlin, Heinrich Heine University Düsseldorf, Ruhr University Bochum). The research team from the Departments of Biomedicine and Clinical Research of the University of Basel, the Department of Neurology at the University Hospital, and the Research Center for Clinical Neuroimmunology, which is affiliated with both institutions, received funding for the study from the University Hospital of Basel’s Propatient Foundation, the Goldschmidt-Jacobson Foundation, the Fondation Pierre Mercier pour la Science, the National Multiple Sclerosis Society and the Swiss National Science Foundation. The two lead authors received grants from the European Committee for Treatment and Research in Multiple Sclerosis Clinical Fellowship, as well as the Swiss Government Excellence Scholarship (Ana Beatriz A.G.R. Gomes) and the Trygve Tellefsens Legat Scholarship (Laila Kulsvehagen).



Source link

Leave a Reply

Your email address will not be published. Required fields are marked *

Before you post, please prove you are sentient.

what is 4 + 6?

Explore More

Could mutations and inherited genes play a role in cerebral palsy?

Hemiplegic cerebral palsy hampers movement in one side of a person’s body. In the first genetic study of its kind to exclusively focus on those with hemiplegic cerebral palsy, a

People with epilepsy live shorter lives

On average, people with epilepsy live 10-12 years fewer than those who do not have the condition. Excess mortality is particularly pronounced among people with epilepsy and mental disorders. This

Promising Alzheimer’s drug candidate prevents buildup of tau proteins in lab and fruit fly studies

The brain of a 7-day-old fruit fly with Tau expressed in a neuronal circuit used by the fly in olfactory memory. The green outlines the neurons, which are starting to