Developing advanced drug screening tools is crucial for the advancement of personalized medicine and the creation of more effective treatments. One organ receiving particular attention in this area is the kidney.

For example, the kidney’s proximal tubules are essential for reabsorbing critical substances from the bloodstream before urine formation. However, traditional in vitro models have struggled to accurately replicate this, often failing to express key transport proteins like organic anion transporters — OAT1/3 — and organic cation transporter 2 — OCT2.

A team at Kyoto University has now developed a human iPS cell-derived kidney organoid-based proximal tubule-on-chipOPTECs-on-Chip — that mimics in vivo renal physiology more closely than ever before. This model exhibits enhanced expression and polarity of essential renal transporters, making it a powerful tool for assessing drug transport and nephrotoxicity.

“Our OPTECs-on-Chip demonstrates significant improvements in the expression and functionality of OAT1/3 and OCT2 transporters compared to previous models using immortalized cells,” explains lead author Cheng Ma from KyotoU’s Graduate School of Engineering.

This microphysiological systemMPS — utilizes two widely adopted differentiation protocols to derive kidney organoids, integrating them into a microfluidic system to form a proximal tubule model. This successfully maintains transporter expression, replicating the mechanisms of drug excretion in renal proximal tubules in vitro, mimicking the function of human epithelial tissue.

“Listening to the needs of pharmaceutical companies to develop the high-function kidney chip they require is the best way for us to integrate MPS technology into drug development,” explains team leader Ryuji Yokokawa at KyotoU’s Department of Micro Engineering.

“We demonstrated that our OPTECs-on-Chip not only assesses nephrotoxicity but also quantifies transcellular substrates transported specifically by OAT1, OAT3, and OCT2. This highlights the benefits of using iPS cell-derived cells and a microfluidic system to replicate in vivo cellular transport mechanisms,” add co-author Minoru Takasato at the RIKEN Center for Biosystems Dynamics Research, together with Toshikazu Araoka of KyotoU’s Center for iPS Cell Research and Application.

Yokokawa’s team anticipates applying their MPS model as a screening tool for developing new drugs by evaluating the transport and nephrotoxicity of various membrane proteins.

“Our model has significant potential for drug screening and personalized medicine,” notes Yokokawa. “By incorporating patient-derived stem cells, we can develop personalized assessments for renal transport and disease modeling.”



Source link

Leave a Reply

Your email address will not be published. Required fields are marked *

Before you post, please prove you are sentient.

What color is fresh snow?

Explore More

Scientists grow ‘mini kidneys,’ revealing new insights into metabolic defects and potential therapy for polycystic kidney disease

Scientists at Nanyang Technological University, Singapore (NTU Singapore) have successfully grown ‘mini kidneys’ in the lab and grafted them into live mice, revealing new insights into the metabolic defects and

Higher thiazide doses shown to reduce kidney stone events

Higher thiazide doses are associated with greater reductions in urine calcium, which in turn correlate with fewer symptomatic kidney stone events, according to a Vanderbilt University Medical Center (VUMC) study

Breakthrough in treatment for world’s leading cause of kidney failure in children

A potential treatment for the world’s leading cause of kidney failure in children needing dialysis has been discovered by an international team of scientists. The University of Bristol-led breakthrough is