Early exposure to antibiotics can trigger long term susceptibility to asthma, according to new research from Monash University. Importantly the research team isolated a molecule produced by gut bacteria that in the future could potentially be trialed as a simple treatment, in the form of a dietary supplement, for children at risk of asthma to prevent them developing the disease.

Asthma affects over 260 million people globally and causes around 455,000 deaths annually.

The research led by Professor Ben Marsland and published today (TBC) in the journal, Immunity — found a molecule, called IPA, that is crucial to long term protection against asthma.

Importantly the finding of the molecule produced by bacteria in a healthy gut provides an explanation as to why the recurrent use of antibiotics increases the risk of asthma, according to Professor Marsland. “We know that recurrent use of antibiotics early in life disrupts a person’s healthy gut microbiota and increases the risk of allergies and asthma. We have discovered that a consequence of antibiotic treatment is the depletion of bacteria that produce IPA, thus reducing a key molecule that has the potential to prevent asthma,” he said.

The first years of life are important in developing a stable gut microbiota, according to Professor Marsland. “It is shaped first by food intake — both milk and solid foods — as well as genetics, and environmental exposures. Infants at high risk of allergies and asthma have been shown to have a disrupted and delayed maturation of the gut microbiome,” he said.

“The use of antibiotics in the first year of life can have the unintentional effect of reducing bacteria which promote health, and we now know from this research that antibiotics lead to reduced IPA, which we have found is critical early in life as our lung cells mature, making it a candidate for early life prevention of allergic airway inflammation. “

Working in mice predisposed to develop asthma, the research team found that — when given antibiotics in early life — the mice were more susceptible to house-dust mite-induced allergic airway inflammation and this lasted into adulthood. Asthma is commonly triggered by exposure to house dust mite.

This susceptibility was maintained long-term, even after the gut microbiome and IPA levels returned to normal, highlighting that this molecule’s function was particularly important early in life.

When these mice had their diet supplemented with the IPA molecule early in life, the researchers found that the mice were effectively cured of developing the house dust mite induced allergic airway inflammation, or asthma, in adulthood.



Source link

Leave a Reply

Your email address will not be published. Required fields are marked *

Before you post, please prove you are sentient.

What is melted ice?

Explore More

Scientists map how deadly bacteria evolved to become epidemic

Pseudomonas aeruginosa — an environmental bacteria that can cause devastating multidrug-resistant infections, particularly in people with underlying lung conditions — evolved rapidly and then spread globally over the last 200

Dietary zinc protects against Streptococcus pneumoniae infection, study finds

Researchers have uncovered a crucial link between dietary zinc intake and protection against Streptococcus pneumoniae, the primary bacterial cause of pneumonia. Globally, it is estimated that nearly two billion people

Tiny swimming robots treat deadly pneumonia in mice

Nanoengineers at the University of California San Diego have developed microscopic robots, called microrobots, that can swim around in the lungs, deliver medication and be used to clear up life-threatening