The work provides novel genetic insights into dietary preferences and opens the possibility of targeting SI to selectively reduce sucrose intake at the population level.

The study was led by Dr. Peter Aldiss, now a group leader in the School of Medicine at the University of Nottingham, alongside Assistant Professor Mette K Andersen, at the Novo Nordisk Foundation Centre for Basic Metabolic Research in Copenhagen and Professor Mauro D’Amato at CIC bioGUNE in Spain and LUM University in Italy. It also involves scientists internationally from Copenhagen, Greenland, Italy and Spain as part of the ‘Sucrase-isomaltase working group’.

Dr Aldiss said: “Excess calories from sugar are an established contributor to obesity and type 2 diabetes. In the UK, we consume 9-12% of our dietary intake from free sugars, such as sucrose, with 79% of the population consuming up to three sugary snacks a day. At the same time, genetic defects in sucrose digestion have been associated with irritable bowel syndrome, a common functional disorder affecting up to 10% of the population.

“Now, our study suggests that genetic variation in our ability to digest dietary sucrose may impact not only how much sucrose we eat, but how much we like sugary foods.”

The team of experts began by investigating the dietary behaviours in mice lacking the SI gene. Here, mice developed a rapid reduction in sucrose intake, and preference. This was confirmed in two large population-based cohorts involving 6,000 individuals in Greenland and 134,766 in the UK BioBank.

The team took a nutrigenetics approach to understand how genetic variation in the SI gene impacts sucrose intake and preference in humans. Strikingly, individuals with a complete inability to digest dietary sucrose in Greenland consumed significantly less sucrose-rich foods whilst individuals with a defective, partially functional SI gene in the UK, liked sucrose-rich foods less.

“These findings suggest that genetic variation in our ability to digest dietary sucrose can influence our intake, and preference, for sucrose-rich foods whilst opening up the possibility of targeting SI to selectively reduce sucrose intake at the population level,” says Dr Aldiss.

“In the future, understanding how defects in the SI gene act to reduce the intake, and preference, of dietary sucrose will facilitate the development of novel therapeutics to help curb population-wide sucrose intake to improve digestive and metabolic health.”



Source link

Leave a Reply

Your email address will not be published. Required fields are marked *

Before you post, please prove you are sentient.

what is 5 in addition to 5?

Explore More

Women who consumed sugar sweetened beverage daily had higher risk of developing liver cancer and chronic liver disease

Approximately 65% of adults in the United States consume sugar sweetened beverages daily. Chronic liver disease is a major cause of morbidity and mortality worldwide and can result in liver

IBS patients (can’t get no) satisfaction

Patient satisfaction is playing an increasingly important role in evaluating the quality of health care and reimbursing physicians for it. Exactly what drives that satisfaction has been difficult to determine.

Innovative stem cell research takes aim at origins of human cancers

How do cells become cancerous, multiply uncontrollably, and form into tumors? And what role do aberrant embryonic stem cells play? These are big questions explored by medical researchers since the