Treating a mouse model of multiple sclerosis with the pregnancy hormone estriol reversed the breakdown of myelin in the brain’s cortex, a key region affected in multiple sclerosis, according to a new UCLA Health study.

In multiple sclerosis, inflammation spurs the immune system to strip away the protective myelin coating around nerve fibers in the brain’s cortex, hampering electrical signals sent and received by the brain. Atrophy of the cortex in MS patients is associated with permanent worsening of disability, such as cognitive decline, visual impairment, weakness and sensory loss.

No currently available treatments for MS can repair damage to myelin. Instead, these treatments target inflammation to reduce symptom flare-ups and new nerve tissue scarring. Previous UCLA-led research found that estriol, a type of estrogen hormone produced in pregnancy, reduced brain atrophy and improved cognitive function in MS patients.

In the new study, researchers treated a mouse model of MS with estriol and found that it prevented brain atrophy and induced remyelination in the cortex, indicating that the treatment can repair damage caused by MS, rather than just slow the destruction of myelin.

This is the first study to identify a treatment that could repair myelin in the cortex, undoing some of the damage caused by MS.

Allan MacKenzie-Graham, an associate professor of neurology, is the study’s corresponding author. Other authors include Cassandra Meyer, Andrew Smith, Aitana A. Padilla-Requerey, Vista Farkhondeh, Noriko Itoh, Yuichiro Itoh, Josephine Gao, Patrick Herbig, Quynhanh Nguyen, Katelyn Ngo, Mandavi Oberoi, Prabha Siddarth and Rhonda R. Voskuhl, all of UCLA.



Source link

Leave a Reply

Your email address will not be published. Required fields are marked *

Before you post, please prove you are sentient.

what is 4 in addition to 5?

Explore More

Just a moment…

Just a moment… Enable JavaScript and cookies to continue This request seems a bit unusual, so we need to confirm that you’re human. Please press and hold the button until

Adolescent glioma subtype responds to CDK4/6 inhibitor

CDK4/6 inhibitors, which are already FDA approved for the treatment of other forms of cancer, show early signs of promise in the treatment of a subtype of pediatric high-grade glioma,

New way inflammation impacts cell communication

Indiana University School of Medicine researchers have made significant progress in understanding how cells communicate during inflammation. The study, recently published in PNAS, was conducted over a period of five