A new study published in the American Society for Microbiology journal Microbiology Spectrum demonstrates that a novel semi-synthetic compound can be derived from natural compounds to produce potent activity against Mycobacterium tuberculosis, including multi-drug resistant strains. The new compound provides a promising chemical scaffold to develop new potent anti-tuberculosis drugs.

M. tuberculosis, the pathogen responsible for tuberculosis (TB), is the leading cause of bacterial disease-related death worldwide. Current antibiotic regimens for the treatment of TB are dated, require longer courses of treatment and risk the development of drug-resistance.

In the new study, researchers conducted a search for novel antibiotics targeting M. tuberculosis that could also be effective against drug-resistant strains. In drug discovery, a valuable place to start looking for new antibiotics is within the world of natural compounds produced by organisms such as plants, fungi and bacteria. Sanguinarine, a natural compound with known antimicrobial properties, is extracted from an herbaceous flowering plant native to North America. Sanguinarine has been used in traditional and alternative medicine for animals, but its toxicity makes it unfit to be used as a drug in humans.

The group of researchers redesigned sanguinarine using principles of medicinal chemistry to produce a more potent antibacterial compound with reduced toxicity. In studies in test tubes and in mice, the improved version of sanguinarine, called BPD-9, was capable of killing strains of M. tuberculosis that are resistant to all front-line antibiotics used in the clinics to treat TB. Moreover, BPD-9 was effective against non-replicating (dormant) and intracellular M. tuberculosis, which are 2 key aspects that limit the effectiveness of current anti-TB drugs. The researchers also found that BPD-9 was only active against pathogenic bacteria from the same genus as M. tuberculosis, which may spare the microbiome and other beneficial bacteria that most antibiotics harm.

“Our findings show a new chemical entity that has unique properties in combating Mycobacterium tuberculosis, which may be harnessed further for clinical translation,” said corresponding study author Jim Sun, Ph.D., Assistant Professor in the Department of Microbiology and Immunology at The University of British Columbia. “Our finding that the new compound is effective against other members of the Mycobacterium genus may also prove to be valuable in the fight against deadly lung infections caused by non-tuberculous mycobacteria, which are notoriously resistant to most antibiotics. It is also enticing to speculate that BPD-9 could be killing Mycobacterium tuberculosis in a way that is different than that of existing anti-TB drugs.”

The study was conducted in collaboration with the medicinal chemistry team of Weibo Yang, Ph.D. at the Shanghai Institute of Materia and Medica (Chinese Academy of Sciences) and bacterial genetics team of Marcel Behr, M.D., and Andréanne Lupien, Ph.D. at McGill University. The research was supported by grants from the Canadian Institutes of Health Research and the National Sanitarium Association.



Source link

Leave a Reply

Your email address will not be published. Required fields are marked *

Before you post, please prove you are sentient.

What is 5 multiplied by 4?

Explore More

Life expectancy study shows it’s never too late to stop smoking

Credit: CC0 Public Domain Quitting smoking even as late as at 75 years of age can meaningfully increase a person’s life expectancy, according to a new study in the American

Lampard Inquiry into 2,000 Essex mental health deaths begins

Richard Knights/BBC Baroness Lampard paid tribute to the “dedicated and tireless campaigning” of bereaved families as the inquiry opened The chairwoman of an inquiry into more than 2,000 mental health-related

Study links household chaos with sleep quality among teens with ADHD symptoms

A new study to be presented at the SLEEP 2024 annual meeting found that household chaos and sleep hygiene are important factors in the relationship between sleep quality and ADHD