New research by the University of Sussex could help to increase life expectancy and improve treatment for an aggressive brain cancer, which impacts thousands of people every year in the UK, and hundreds of thousands worldwide.

In the study, published in the journal of Advanced Science, researchers have discovered that an understudied protein, called PANK4, is able to block cancer cells from responding to chemotherapeutic treatment for the highly intrusive brain cancer, glioblastoma.

Scientists at Sussex have demonstrated that if the protein is removed, cancer cells respond better to the main chemotherapy drug used globally for the treatment of glioblastoma.

Prof Georgios Giamas, Professor of Cancer Cell Signalling at the University of Sussex explains:

“Glioblastoma is a devastating brain cancer, and researchers are working hard to identify ways to delay progression of the disease, and tackle cell resistance to treatment. As this is the first time that PANK4 has been linked to glioblastoma, the next step is to develop a drug targeting this protein to try to reverse chemo-resistance and restore sensitivity, ensuring that patients receive the best treatment and have better outcomes.”

Glioblastoma is one of the most aggressive forms of brain cancer. Approximately 3,200 adults are diagnosed with the disease each year in the UK, and around 250,000 — 300,000 globally, with a best-case survival rate of just one to 18 months after diagnosis.

Following surgery to remove the tumour, glioblastoma patients are typically treated with radiation and the chemotherapeutic drug, temozolomide. Although patients initially respond well to the drug, the cancer cells quickly develop resistance to this treatment.

The University of Sussex scientists led an international research team to understand the possible reasons for this resistance, helping to guide future therapies to improve quality of life and increase life expectancy for those with glioblastoma.

The team identified a protein called PANK4 which, when removed from the cancer cells, can lead to the cell’s death, and saw patients better responding to temozolomide.

Linked to this, the researchers found that patients expressing high levels of the PANK4 protein had lower survival rates.

Dr Viviana Vella, research fellow at the University of Sussex explains:

“There are a multitude of under-investigated proteins that may hold great potential for therapeutic intervention. Our study sheds light on this understudied protein, PANK4, unveiling a protective role in temozolomide-resistant cancer cells. Ultimately, PANK4 depletion represents a vulnerability that can now be exploited to restore sensitivity to the drug and improve treatment.”

This study contributes to a body of ground-breaking research from the Sussex researchers, which focuses on the early diagnosis and treatment of glioblastoma.

The research group now hope to develop a drug to reverse chemo-resistance and improve outlook for patients.

Ms Charley Cranmer, Director of Fundraising and Communications, Action Against Cancer who funded the research adds:

“Action Against Cancer is very proud to have funded this ground-breaking research that offers such hope for patients with this type of aggressive brain cancer.”



Source link

Leave a Reply

Your email address will not be published. Required fields are marked *

Before you post, please prove you are sentient.

Earth orbits the ...

Explore More

Glaucoma drug shows promise against neurodegenerative diseases, animal studies suggest

A drug commonly used to treat glaucoma has been shown in zebrafish and mice to protect against the build-up in the brain of the protein tau, which causes various forms

Administration of steroid to extremely preterm infants not associated with adverse effects on neurodevelopment

The administration of low-dose hydrocortisone to extremely preterm infants was not associated with any adverse effects on neurodevelopmental outcomes at 2 years of age, according to a study published by

New insights into the protein-mediated motor neuron loss in amyotrophic lateral sclerosis

Our movements are controlled by multiple neural pathways that connect the brain and spinal cord. In particular, neurons in the cerebral cortex send commands to the motor neurons in the