According to an ahead-of-print article published in the December issue of the American Journal of Roentgenology (AJR), researchers have validated a first-of-its-kind machine learning-based model to evaluate immunohistochemical (IHC) characteristics in patients with suspected thyroid nodules, achieving “excellent performance” for individualized noninvasive prediction of the presence of cytokeratin 19, galectin 3, and thyroperoxidase based upon CT images.

“When IHC information is hidden on CT images,” principal investigator Jiabing Gu explained, “it may be possible to discern the relation between this information and radiomics by use of texture analysis.”

To assess whether texture analysis could be utilized to predict IHC characteristics of suspected thyroid nodules, Gu and colleagues from China’s University of Jinan enrolled 103 patients (training cohort-to-validation cohort ratio, ? 3:1) with suspected thyroid nodules who had undergone thyroidectomy and IHC analysis from January 2013 to January 2016. All 103 patients — 28 men, 75 women; median age, 58 years; range, 33-70 years — underwent CT before surgery, and 3D Slicer v 4.8.1 was used to analyze images of the surgical specimen.

To facilitate test-retest methods, 20 patients were imaged in two sets of CT series within 10-15 minutes, using the same scanner (LightSpeed 16, Philips Healthcare) and protocols, without contrast administration. These images were used only to select reproducible and nonredundant features, not to establish or verify the radiomic model.

The Kruskal-Wallis test (SPSS v 19, IBM) was employed to improve classification performance between texture feature and IHC characteristic. Gu et al. considered characteristics with p

The best performance of the cytokeratin 19 radiomic model yielded accuracy of 84.4% in the training cohort and 80.0% in the validation cohort. Meanwhile, the thyroperoxidase and galectin 3 predictive models evidenced accuracies of 81.4% and 82.5% in the training cohort and 84.2% and 85.0% in the validation cohort, respectively.

Noting that cytokeratin 19 and galectin 3 levels are high in papillary carcinoma, Gu maintained that these models can help radiologists and oncologists to identify papillary thyroid cancers, “which is beneficial for diagnosing papillary thyroid cancers earlier and choosing treatment options in a timely manner.”

Ultimately, asserted Gu, “this model may be used to identify benign and malignant thyroid nodules.”



Source link

Leave a Reply

Your email address will not be published. Required fields are marked *

Before you post, please prove you are sentient.

What is 5 times 3?

Explore More

Novel PET tracer enhances lesion detection in medullary thyroid cancer, offers potential for targeted therapy

A newly developed PET imaging agent has been found to be effective in identifying medullary thyroid cancer (MTC) in preclinical and clinical studies, according to research published in the January

In-utero exposures associated with increased risk of thyroid cancer

A recent study by prof. Tone Bjørge, University of Bergen, and her team shows that thyroid cancer is related to in-utero exposures. Thyroid cancer is diagnosed at a younger age

New gene mutation in familial thyroid cancers

Researchers from Penn State College of Medicine identified a new gene mutation that may cause a type of familial thyroid cancer. Dr. Darrin Bann, an otolaryngology resident at the College